Mutations at pipX suppress lethality of PII-deficient mutants of Synechococcus elongatus PCC 7942.

نویسندگان

  • Javier Espinosa
  • Miguel Angel Castells
  • Karim Boumediene Laichoubi
  • Asunción Contreras
چکیده

The P(II) proteins are found in all three domains of life as key integrators of signals reflecting the balance of nitrogen and carbon. Genetic inactivation of P(II) proteins is typically associated with severe growth defects or death. However, the molecular basis of these defects depends on the specific functions of the proteins with which P(II) proteins interact to regulate nitrogen metabolism in different organisms. In Synechococcus elongatus PCC 7942, where P(II) forms complexes with the NtcA coactivator PipX, attempts to engineer P(II)-deficient strains failed in a wild-type background but were successful in pipX null mutants. Consistent with the idea that P(II) is essential to counteract the activity of PipX, four different spontaneous mutations in the pipX gene were found in cultures in which glnB had been genetically inactivated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of spontaneous mutations in PipX functions and regulatory complexes on the cyanobacterium Synechococcus elongatus strain PCC 7942.

In Synechococcus elongatus sp. PCC 7942, PipX forms complexes with P(II), a protein found in all three domains of life as an integrator of signals of the nitrogen and carbon balance, and with the cyanobacterial nitrogen regulator NtcA. We recently showed that previous inactivation of pipX facilitates subsequent inactivation of the glnB gene. Here, we show that the three spontaneous pipX point m...

متن کامل

PipY, a Member of the Conserved COG0325 Family of PLP-Binding Proteins, Expands the Cyanobacterial Nitrogen Regulatory Network

Synechococcus elongatus PCC 7942 is a paradigmatic model organism for nitrogen regulation in cyanobacteria. Expression of genes involved in nitrogen assimilation is positively regulated by the 2-oxoglutarate receptor and global transcriptional regulator NtcA. Maximal activation requires the subsequent binding of the co-activator PipX. PII, a protein found in all three domains of life as an inte...

متن کامل

Posttranslational regulation of nitrate assimilation in the cyanobacterium Synechocystis sp. strain PCC 6803.

Posttranslational regulation of nitrate assimilation was studied in the cyanobacterium Synechocystis sp. strain PCC 6803. The ABC-type nitrate and nitrite bispecific transporter encoded by the nrtABCD genes was completely inhibited by ammonium as in Synechococcus elongatus strain PCC 7942. Nitrate reductase was insensitive to ammonium, while it is inhibited in the Synechococcus strain. Nitrite ...

متن کامل

Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes.

The Synechococcus sp. PCC 7942 nitrogen regulator PipX interacts in a 2-oxoglutarate-dependent manner with the global nitrogen transcription factor NtcA and the signal transduction protein P(II). In vivo, PipX is involved in the NtcA-dependent induction of glnB and glnN genes. To further investigate the extent to which PipX is involved in global nitrogen control, the effect of pipX inactivation...

متن کامل

Metabolic and transcriptomic phenotyping of inorganic carbon acclimation in the Cyanobacterium Synechococcus elongatus PCC 7942.

The amount of inorganic carbon is one of the main limiting environmental factors for photosynthetic organisms such as cyanobacteria. Using Synechococcus elongatus PCC 7942, we characterized metabolic and transcriptomic changes in cells that had been shifted from high to low CO(2) levels. Metabolic phenotyping indicated an activation of glycolysis, the oxidative pentose phosphate cycle, and glyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 191 15  شماره 

صفحات  -

تاریخ انتشار 2009